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Faculty of Education Fourth year (Math. ) 221512016
Math. Department (Quantum Mechanics M424) Time: 1 hour

Answer the following questions:

La | | Find the adjoint operator AT if A=% defined on L, ie.
Ag(x) = %w(x) with the boundary conditiong(+w) = 0.
Il.  Show that any orthonormal set is linearly independent (L1).
1.b :
State the postulates of quantum mechanics.

2.a N * Oy .
Prove that: J(x,t)_(z)lm(y/ W) where j(x;t) is the probability
(particle) current density vector and y satisfy Schrodinger time
dependent equation.

2.b | A particle of mass u and energy E approaches a square potential

barrier U(x)=0, x<0and U(x)=U,, x>0 where U, >0 from the left.

0
Prove that the reflection coefficient R and the transmission coefficient

T satisfy the relation R+T =1incase E >U,.
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1l.a Jlsmd) Al

I) Proof:
To obtain the adjoint operator, we take the inner product

(Ag,y) = T(Aqﬁ(x))*t//(x)dx =T%¢(x)*q/(x)dx then by partial integration

let u=y(x) and dv=%¢(x)*dx thisleadsto du=dw(x), v=¢(x)" then

T%Mx)*l//(x)dx =y () 9(x)’ : - Tqﬁ(x)*(%z//(x))dx . From the boundary condition

p)=0 then  [4 4"y =0+ [900" (- Ly )i =0, Dw) =6, Aw)

d
ot
I1) Proof:
To prove that the orthonormal set is L1, let {l//i} is a set of n vectors where none of

A=

which equal the zero vector and ¢, are scalars. Then we make the linear combination
n
2 aifi}=0 (D),
1=

Let yjan element of the set {l//i}, then

(l//j’élai{l//i}):élai(wj’l//i):élai 5ij :aj 2)
But (l//i ,0)=0 (3)
From (2) and (3), we obtain a;=0 V j=123,....n.
Then {y.} are LI.

1.b J)iged) Aila)

*The postulates of quantum mechanics are:

1)-Postulate I: Every physical state of a dynamical system (a particle) is represented at a
given instant of time t by normed vector |y) in H. It is assumed that the state vector

contains all the information which one can know about the state of the system at that
instant of time.  and ey where 5" =5 represent the same physical state.

2)- Postulate 11: To every dynamical variable A there corresponds an observable A .

The observable % and p must satisfy [% p]=in. The rules for constructing the
observable A corresponding to the dynamical variable A, inthe x—rep are as follows:




(i)x—> K=x,t>1=t, p—>f)=—ihdi
X

(ii)A(x, p,t) > A= A(x,—ihi,t).
dx

3)- Postulate I11: If a particle is in state |y) , a measurement of a dynamical variable A
which is represented by the observable A and

A|<Dn>=‘t)‘n|(0n>’ <¢n|¢n>=5nm’ ia=Z|¢i><¢i| will

*yield one of the eigenvalues a, with probability

|<¢’i |‘/’>|2
(w|w)

** If the result of measurement is a_, then the state of the system will change from

P, (&)=

lw) 1o |p,) as a result of measurement.
4)- Postulate 1V: The state function y (x,t) describing the state of a dynamical system

obeys the following” Schrodinger time-dependent” equation whose Hamiltonian H is

.. 0 ~
ii—w(X,t)=Hy(xt
att//( )=Hy (x1)

2.2 J1smd) )

Probability (particle) current density vector j(x;t)

joxt) ———>

i) ——» 0. >

X1 X2

The probability that a particle is inside the interval (x,,x,) attime t is:

Tp(x,t)dx = TW*(x,t)W(x,t) dx

The rate of change of probability for the particle to be inside (x,,x,)
: : d ¢ d’é .
J(X 1) = j(%,,1) _Ex{p(x’t)dx_ﬂ"’ xHwxtdx (1)

—f—(w (xOw(x t»dx—f(w*a"t’ Wy yax




*

. - . Oy A L 0y
Since Hy =in— and (H =—ih——, then
v o (Hy) p

oy i n* o° ay/ i n° 0°
-U(X)Jw and = -U(x U =u
o o VO ad = ae TV
- 2 *
From which v~ oy 61// =£( 0w O w) . Substituting into (1)

a ol T w

. . 0° « 0 0
[CAE J(xz,t>=—j( - )dx=2— g - W yax
M, OX
JR . )
=—( - "’ v)
From (2)
« 0 0
i, t)———( - a"; ) 3)
. 1/ ~ 0y « Oy
1) = (=) (2i)1 Im
i(x.1) (2#)(I)m(l// —)= () m(y ax)
:2.b Jiped) Ala)
£ A Energy
UG,
| 1l Ve
U(x) X
The energy equation or Shrodinger equation may be written as:
d> 2u
W+7(E—U(X))]WE =0 @
In case E >U, . According the potential regions, equation (1) becomes
w! +kiw, =0, K, =%1/2yE, x<0
(2)
v +K, =0, == \2u(E-U,), x>0

The general solution of system (2) is

3)

v, (X) = Aexp(ik,x) + Bexp(ik,x), x<0
v, (X) = Cexp(ikx) + D exp(—ikx), x>0




Since the beam incident from the left, then D must vanish.

Continuity Conditions

v, 0=y, (0)=A+B=C } 4)
wI(0) =y (0) = k,A—k B =kC
From (4)
B= (k0 _k)A and C=( 2, )A Thus (3) becomes
ko +K ko, +K
. k, —k .
exp(ik,x) + (k I()exp(—lkox) x<0
J’_
pe(x)=A ’ )
(—2-) exp(ikx) x>0

ko +k

ref

Since the reflection coefficient Rand the transmission T coefficient satisfy the relations R =

Jinc
and T = ﬁ respectively, where j(x,t) = (E) Im(y/*(x,t)w).
inc H X
Now, let us calculate RandT . From the values for A and B with equation (5), one gets
7k nk nk B  k,—k
Jinc :_O|A|2’ ‘]ref :__O|B|2’ Jtran :_|C|2 S R=1—= =(0_)2
U U A ko +K
2
And T = L E — Lkz
Ko A (k, +k)
Thus
_ 2 2 2 2
R4T :(ko k)2 N 4k k - k, — 2Kk +k 2+4k0k _ Ko +2k0k4gk _
ko +K (k, +k) (k, +k) (ky +Kk)
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