جامعة بنها - كلية العلوم - قسم الرياضيات الفرقة الرابعة (تربية عام - رياضيات) الفصل الدراسي الثاني

يوم الامتحان: الأحد 22 / 5/ 2016 م

المادة : ميكانيكا الكم (M424)

أستاذ المادة : د . / خليل محد خليل محد

مدرس بقسم الرياضيات بكلية العلوم صورة من الامتحان+ نموذج إجابته

Faculty of Education
Math. Department (Q

Fourth year (Math.)
(Quantum Mechanics M424)

22 / 5 / 2016 Time: 1 hour

Answer the following questions:

7 4 11 15	wer the ronowing questions.
1.a	I. Find the adjoint operator \hat{A}^+ if $\hat{A} = \frac{d}{dx}$ defined on L_2 i.e.
	$\hat{A}\varphi(x) = \frac{d}{dx}\varphi(x)$ with the boundary condition $\varphi(\pm \infty) = 0$.
	II. Show that any orthonormal set is linearly independent (LI).
1.b	State the postulates of quantum mechanics.
2.a	Prove that: $\underline{j}(x;t) = (\frac{\hbar}{\mu}) \operatorname{Im}(\psi^* \frac{\partial \psi}{\partial x})$ where $\underline{j}(x;t)$ is the probability
	(particle) current density vector and ψ satisfy Schrödinger time
	dependent equation.
2.b	A particle of mass μ and energy E approaches a square potential
	barrier $U(x) = 0$, $x < 0$ and $U(x) = U_0$, $x \ge 0$ where $U_0 > 0$ from the left.
	Prove that the reflection coefficient R and the transmission coefficient
	T satisfy the relation $R + T = 1$ in case $E > U_0$.

انظر امتحان الكهربية الديناميكية

Dr. Khalil Mohamed

إجابة السؤال 1.a:

I) Proof:

To obtain the adjoint operator, we take the inner product

$$(\hat{A}\phi,\psi) = \int_{-\infty}^{\infty} (\hat{A}\phi(x))^* \psi(x) dx = \int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx \quad \text{then by partial integration}$$
let $u = \psi(x)$ and $dv = \frac{d}{dx} \phi(x)^* dx$ this leads to $du = d\psi(x)$, $v = \phi(x)^*$ then
$$\int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx = \psi(x) \phi(x)^* \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \phi(x)^* (\frac{d}{dx} \psi(x)) dx$$
. From the boundary condition

$$\phi(\pm \infty) = 0 \quad \text{then} \quad \int_{-\infty}^{\infty} \frac{d}{dx} \phi(x)^* \psi(x) dx = 0 + \int_{-\infty}^{\infty} \phi(x)^* (-\frac{d}{dx} \psi(x)) dx = (\phi, (-\frac{d}{dx}) \psi) = (\phi, \hat{A}^+ \psi)$$

$$\therefore \hat{A}^+ = -\frac{d}{dx}.$$

II) Proof:

To prove that the orthonormal set is LI, let $\{\psi_i\}$ is a set of n vectors where none of which equal the zero vector and α_i are scalars. Then we make the linear combination

$$\sum_{i=1}^{n} \alpha_i \{ \psi_i \} = 0 \quad (1).$$

Let ψ_i an element of the set $\{\psi_i\}$, then

$$(\psi_{j}, \sum_{i=1}^{n} \alpha_{i} \{\psi_{i}\}) = \sum_{i=1}^{n} \alpha_{i} (\psi_{j}, \psi_{i}) = \sum_{i=1}^{n} \alpha_{i} \delta_{ij} = \alpha_{j}$$
But $(\psi_{i}, 0) = 0$ (3)

From (2) and (3), we obtain $\alpha_i = 0 \quad \forall j = 1,2,3,...n$.

Then $\{\psi_i\}$ are LI.

إجابة السؤال 1.b:

*The postulates of quantum mechanics are:

- 1)-Postulate I: Every physical state of a dynamical system (a particle) is represented at a given instant of time t by normed vector $|\psi\rangle_t$ in H. It is assumed that the state vector contains all the information which one can know about the state of the system at that instant of time. ψ and $e^{i\delta}\psi$ where $\delta^* = \delta$ represent the same physical state.
- 2)- Postulate II: To every dynamical variable A there corresponds an observable \hat{A} . The observable \hat{x} and \hat{p} must satisfy $[\hat{x},\hat{p}]=i\hbar$. The rules for constructing the observable \hat{A} corresponding to the dynamical variable A, in the x-rep are as follows:

$$(i)x \rightarrow \hat{x} = x, t \rightarrow \hat{t} = t, p \rightarrow \hat{p} = -i\hbar \frac{d}{dx}$$

$$(ii)A(x, p, t) \rightarrow \hat{A} = A(x, -i\hbar \frac{d}{dx}, t).$$

3)- Postulate III: If a particle is in state $|\psi\rangle_{t}$, a measurement of a dynamical variable A which is represented by the observable \hat{A} and

$$\hat{A}|\varphi_n\rangle = a_n|\varphi_n\rangle, \ \langle \varphi_n|\varphi_n\rangle = \delta_{nm}, \ \hat{1}_a = \sum_i |\varphi_i\rangle\langle \varphi_i| \ \text{will}$$

*yield one of the eigenvalues a_i with probability

$$\rho_{\psi}(a_{i}) = \frac{\left|\left\langle \varphi_{i} \left| \psi \right\rangle \right|^{2}}{\left\langle \psi \left| \psi \right\rangle \right\rangle}$$

** If the result of measurement is a_k , then the state of the system will change from $|\psi\rangle$ to $|\varphi_k\rangle$ as a result of measurement.

4)- Postulate IV: The state function $\psi(x,t)$ describing the state of a dynamical system obeys the following" Schrodinger time-dependent" equation whose Hamiltonian \hat{H} is

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \hat{H} \psi(x,t)$$

إجابة السؤال 2.a:

Probability (particle) current density vector j(x;t)

$$\underbrace{j(x;t)}_{j(x_1,t)} \longrightarrow \underbrace{j(x_2,t)}_{X_1} \longrightarrow \underbrace{x_2}$$

The probability that a particle is inside the interval (x_1, x_2) at time t is:

$$\int_{x_1}^{x_2} \rho(x,t) dx = \int_{x_1}^{x_2} \psi^*(x,t) \psi(x,t) dx$$

The rate of change of probability for the particle to be inside (x_1, x_2)

$$j(x_1,t) - j(x_2,t) = \frac{d}{dt} \int_{x_1}^{x_2} \rho(x,t) dx = \frac{d}{dt} \int_{x_1}^{x_2} \psi^*(x,t) \psi(x,t) dx$$
(1)
$$= \int_{x_1}^{x_2} \frac{\partial}{\partial t} (\psi^*(x,t) \psi(x,t)) dx = \int_{x_1}^{x_2} (\psi^* \frac{\partial \psi}{\partial t} + \frac{\partial \psi^*}{\partial t} \psi) dx$$

Since
$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}$$
 and $(\hat{H}\psi)^* = -i\hbar \frac{\partial \psi^*}{\partial t}$, then

$$\frac{\partial \psi}{\partial t} = \frac{i}{\hbar} \left[\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} - U(x) \right] \psi \text{ and } \frac{\partial \psi^*}{\partial t} = -\frac{i}{\hbar} \left[\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} - U(x) \right] \psi^*; U^* = U$$

From which $\psi^* \frac{\partial \psi}{\partial t} + \frac{\partial \psi^*}{\partial t} \psi = \frac{i\hbar}{2\mu} (\psi^* \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi^*}{\partial x^2} \psi)$. Substituting into (1)

$$j(x_{1},t) - j(x_{2},t) = \frac{i\hbar}{2\mu} \int_{x_{1}}^{x_{2}} (\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}} - \frac{\partial^{2} \psi^{*}}{\partial x^{2}} \psi) dx = \frac{i\hbar}{2\mu} \int_{x_{1}}^{x_{2}} \frac{\partial}{\partial x} (\psi^{*} \frac{\partial \psi}{\partial x} - \frac{\partial \psi^{*}}{\partial x} \psi) dx$$

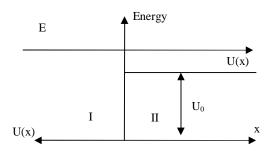
$$= \frac{i\hbar}{2\mu} (\psi^{*} \frac{\partial \psi}{\partial x} - \frac{\partial \psi^{*}}{\partial x} \psi) \Big|_{x_{1}}^{x_{2}}$$
(2)

From (2)

$$j(x,t) = -\frac{i\hbar}{2\mu} \left(\psi^* \frac{\partial \psi}{\partial x} - \frac{\partial \psi^*}{\partial x} \psi \right) \tag{3}$$

$$\therefore \quad j(x,t) = \left(-\frac{i\hbar}{2\mu}\right)(2i)\operatorname{Im}(\psi^*\frac{\partial\psi}{\partial x}) = \left(\frac{\hbar}{\mu}\right)\operatorname{Im}(\psi^*\frac{\partial\psi}{\partial x})$$

إجابة السؤال 2.b:



The energy equation or Shrodinger equation may be written as:

$$\left[\frac{d^{2}}{dx^{2}} + \frac{2\mu}{\hbar}(E - U(x))\right]\psi_{E} = 0 \tag{1}$$

In case $E > U_0$. According the potential regions, equation (1) becomes

$$\psi_{I}'' + k_{0}^{2} \psi_{I} = 0, k_{0} = \frac{1}{\hbar} \sqrt{2\mu E}, x < 0$$

$$\psi_{II}'' + k^{2} \psi_{II} = 0, k = \frac{1}{\hbar} \sqrt{2\mu (E - U_{0})}, x \ge 0$$
(2)

The general solution of system (2) is

$$\psi_{I}(x) = A \exp(ik_{0}x) + B \exp(ik_{0}x), \qquad x < 0$$

$$\psi_{II}(x) = C \exp(ikx) + D \exp(-ikx), \qquad x \ge 0$$
(3)

Since the beam incident from the left, then D must vanish.

Continuity Conditions

$$\psi_{I}(0) = \psi_{II}(0) \Rightarrow A + B = C$$

$$\psi_{I}''(0) = \psi_{II}''(0) \Rightarrow k_{0}A - k_{0}B = kC$$

$$(4)$$

From (4)

$$B = (\frac{k_0 - k}{k_0 + k})A$$
 and $C = (\frac{2k_0}{k_0 + k})A$ Thus (3) becomes

$$\psi_{E}(x) = A \begin{cases} \exp(ik_{0}x) + (\frac{k_{0} - k}{k_{0} + k}) \exp(-ik_{0}x) & x < 0 \\ (\frac{2k_{0}}{k_{0} + k}) \exp(ikx) & x \ge 0 \end{cases}$$
 (5)

Since the reflection coefficient R and the transmission T coefficient satisfy the relations $R = \frac{j_{ref}}{j_{inc}}$

and
$$T = \begin{vmatrix} j_{tran} \\ j_{inc} \end{vmatrix}$$
 respectively, where $j(x,t) = (\frac{\hbar}{\mu}) \operatorname{Im}(\psi^*(x,t) \frac{\partial \psi(x,t)}{\partial x})$.

Now, let us calculate R and T. From the values for A and B with equation (5), one gets

$$j_{inc} = \frac{\hbar k_0}{\mu} |A|^2, \qquad J_{ref} = -\frac{\hbar k_0}{\mu} |B|^2, \qquad J_{tran} = \frac{\hbar k}{\mu} |C|^2 \qquad \therefore R = \left| \frac{B}{A} \right|^2 = (\frac{k_0 - k}{k_0 + k})^2$$

And
$$T = \frac{k}{k_0} \left| \frac{C}{A} \right|^2 = \frac{4k_0 k}{(k_0 + k)^2}$$

Thus

$$R + T = \left(\frac{k_0 - k}{k_0 + k}\right)^2 + \frac{4k_0 k}{\left(k_0 + k\right)^2} = \frac{k_0^2 - 2k_0 k + k^2 + 4k_0 k}{\left(k_0 + k\right)^2} = \frac{k_0^2 + 2k_0 k + k^2}{\left(k_0 + k\right)^2} = 1$$
