قسم: الرياضيات

المستوى: الثانى ترم صيفى

الماده: توبوتوجي و جبر

الإجابه النموزجيه:

- (1) لیکُن (X, τ) فضاء توبولوجی و کانت A مجموعه جزئیه من (1) فأنّ
- (۱) تُسمى النقطة $\alpha \in A$ نقطه داخليه interior point للمجموعه الجزئيه A إذا وجدت مجموعه مَفْتوحَه G بحيث تُحقق $\alpha \in G \subseteq A$.
 - وب) تُسمى النقطه $A \in X$ نقطه خارجيه $\alpha \in X$ نقطه $\alpha \in X$ نقطه $\alpha \in A$ نقطه خارجيه $\alpha \in A$ نقطه خارجيه $\alpha \in A$

ويُطلق على عائلة النقاط الخارجيه لمجموعه A بخارجية A_{ϵ} و يُرمز لها بالرمز

.ext(A)

.int(A)

نقطه $\alpha \in X$ نقطه حدودیه $\alpha \in X$ نقطه $\alpha \in X$ المجموعة $\alpha \in X$ كأنّت

 α ال المنتمى إلى ext(A) و أيضا لا تنتمى إلى int(A) أى أن α $\alpha \in [int(A)]^c \cap [ext(A)]^c$

 $A'\cup B'\subseteq (A\cup B)$ أيضا من العلاقه المعروفه $(A\cup B)'\subseteq A'\cup B'$ العكس لإثبات أنّ $\alpha\not\in B'$ أيضا م $\alpha\not\in B'$ و أيضا $\alpha\not\in A'\cup B'$ و أيضا $\alpha\not\in A'\cup B'$ عندئذ سيوجد $V,W\in \mathcal{N}_{\alpha}$ عندئذ سيوجد $(V-\{\alpha\})\cap B=\emptyset$

==

و حیث أن
$$\mathcal{N} \cap W \in \mathcal{N}_{\alpha}$$
 عندئذ یتحقق $[(V \cap W) - \{\alpha\}] \cap (A \cup B) = \emptyset$ $[(V \cap W) - \{\alpha\}] \cap (A \cup B)'$ $[A \cup B]$ $[A \cup B]$

. $(A \cup B)' = (A' \cup B')$ من (1)، (2) نحصنل على أنّ

$$P$$
 توبولوجى النقطه المحدده p

- p ، p توبولوجى النقطه المحدده p فى فئه p وتوبولوجى النقطه المُستبعده pر بریت اُنّ X فی فئه $oldsymbol{ heta}$ $\mathbf{P} \cup \mathbf{\xi}$ وأن $\mathbf{F} = \mathbf{\xi} \mathbf{P}$.
- (4) کما أن $P(X) = \mathcal{P}(X) = \mathcal{P}(X)$ کما أن $\mathcal{P} \subseteq P(X) = \mathcal{P}(X)$ إذن

$$\boldsymbol{\varrho} \cup \boldsymbol{\xi} \subseteq P(\boldsymbol{X}) = \boldsymbol{\vartheta} \quad \dots \dots (1)$$

سنجد أن هُناك إحتمالين هما P(X) = Dمن ناحية أخرى, بأخذ با (5)

(i)
$$p \in H \Rightarrow H \in P \Rightarrow H \in P \cup \xi$$

(6) (ii)
$$p \notin H \Rightarrow H \in \xi \Rightarrow H \in \mathcal{P} \cup \xi$$
.

بالتالي فأنّ (7)

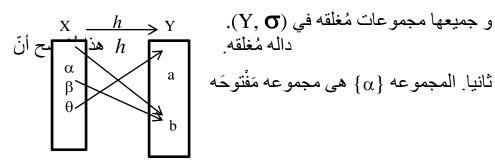
$$D = P(X) \subseteq \mathcal{P} \cup \mathcal{E}$$
 (2)

(8) نجد أُنّ
$$\mathcal{P} \cup \xi = D$$

$$P \cap \xi = \{X, \phi\} = \emptyset$$
 ا أنه من التعريفات السابقه، نحصُل على التعريفات السابقه، نحصُل العلى التعريفات السابقه، نحصُل على التعريفات السابقه،

 ϕ , X, {β, θ} هي (X, τ) هي المجموعات المُغلقه في (3)

$$h\left(\varphi \right) = \varphi, \ h\left(X \right) = Y, \ h\left(\left\{ \beta, \theta \right\} \right) = \left\{ a, b \right\} = Y$$
 کما اُنّ



فی (X, τ) .

بينما $h(\{\alpha\}) = \{b\}$ و هى ليست مجموعه مَفْتوحَه في $h(\{\alpha\}) = \{b\}$. هذا يُثبت أنّ h داله ليست مَفْتوحَه.

 $h^{-1}\left(\{a\}\right)=\{\theta\}
ot\in\mathbf{T}$ بينما $\{a\}\in\mathbf{G}$ بينما أخيراً، حيث أنّ h داله غير مُتصله.

$$\begin{split} \dot{\upsilon}\dot{\upsilon} (\alpha), & \beta \in \textbf{\textit{F}} \quad \underline{\textit{u}} = (x_1, y_1, z_1) \;, \; \underline{\textit{v}} = (x_2, y_2, z_2) \in \textbf{\textit{R}}^3 \; \dot{\upsilon} (4) \\ T (\alpha \, \underline{\textit{u}} + \beta \, \underline{\textit{v}}) &= T \left[\alpha \, (x_1, y_1, z_1) + \beta \, (x_2, y_2, z_2) \right] \\ &= T \left[(\alpha \, x_1, \alpha \, y_1, \alpha \, z_1) + \, (\beta \, x_2, \beta \, y_2, \beta \, z_2) \right] \\ &= T \left(\alpha \, x_1 + \beta \, x_2, \alpha \, y_1 + \beta \, y_2 \;, \alpha \, z_1 + \beta \, z_2 \;) \\ &= (\alpha \, x_1 + \beta \, x_2 + 2\alpha \, y_1 + 2\beta \, y_2 \;, \alpha \, z_1 + \beta \, z_2 - \alpha \, y_1 - \beta \, y_2, \\ &- \alpha \, x_1 - \beta \, x_2 - 2\alpha \, z_1 - 2\beta \, z_2 \right) \\ &= (\alpha \, x_1 + 2\alpha \, y_1 \;, \alpha \, z_1 - \alpha \, y_1 \;, -\alpha \, x_1 - 2\alpha \, z_1) + \\ &- (\beta \, x_2 + 2\beta \, y_2 \;, \beta \, z_2 - \beta \, y_2 \;, -\beta \, x_2 - 2\beta \, z_2) \\ &= \alpha \, (x_1 + 2 \, y_1 \;, z_1 - y_1 \;, -x_1 - 2 \, z_1) + \\ &- \beta \, (x_2 + 2 \, y_2 \;, z_2 - y_2 \;, -x_2 - 2 \, z_2) \\ &= \alpha \, T \left(x_1 \;, y_1 \;, z_1 \right) + \beta \, T \left(x_2 \;, y_2 \;, z_2 \right) \\ &= \alpha \, T \left(\underline{\textit{u}} \right) + \beta \, T \left(\underline{\textit{v}} \right) \end{split}$$

إذن T تحويلاً خطياً.

$$\ker T = \{ \ \underline{v} \in \mathbb{R}^3 \ : \ T(\underline{v}) = \underline{0} \ \}$$

$$= \{ \ (x, y, z) \in \mathbb{R}^3 \ : \ T(x, y, z) = \underline{0} \}$$

$$= \{ \ (x, y, z) \in \mathbb{R}^3 \ : \ (x+2y, z-y, -x-2z) = \underline{0} \}, T$$

$$= \{ \ (x, y, z) \in \mathbb{R}^3 \ : \ x+2y = 0, z-y = 0, -x-2z = 0 \}$$

$$= \{ \ (x, y, z) \in \mathbb{R}^3 \ : \ x = -2y, \ z = y, \ x = -2z \ \}$$

$$= \{ \ (-2y, y, y) \in \mathbb{R}^3 \ : \ y \in \mathbb{R} \ \}$$