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Faculty of Education Fourth year Math. 8/6/ 2014
Math. Dept. Benha Quantum Mechanics (M424) Time: 1 hour

Answer all the following questions:

1.a | Show that: the eigenvalues of a hermitian operator are pure real and its
eigenvectors corresponding to unequal eigenvalues are orthogonal.

1.b | State without proof the properties of the projection operator P. Let v,
be an orthonormal basis and the operator P, is defined as Pg =y, (v,.¢),
find the eigenvalues and the corresponding eigenvectors of P.

1.c | Find the eigenfunctions w (x) and the corresponding eigenvalues of the
operator: Azi;—(p, v(p)=w(p+2r).

2.a | State the postulates of qguantum mechanics.

2.b

Determine the mean value of a mechanical quantity IZ% described by

.- ~2 262 . . 9
the hermitian operator LS =-7 — In the state w(¢)= Asin“ ¢,
0

O<p<2r.
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-1.a Jsad) Ala)

Proof:
In the first, we prove that the eigenvalues of a hermitian operator are pure real.

Let A=A" (i. e. A hermitaian) and A‘Pa(x)za‘{’a(x), Ya(x)=0
~ * * 2 )

but (A¥4,W4)= (Yo, A"W,a)=(¥5,A¥,)=(V,.a¥,)=a(¥5,¥3,)
2 y
=¥ 4 (i)

fromiandiileadsto a ‘Pauz = a||‘PaH2 :>(a*—a)||‘PaH2 =0

Wa#0 =a -a=0 =a =a i.e the eigenvalues are pure real

second, suppose

A‘Pl(x) = al‘Pl(x), ‘{’1(x) =0 and A‘Pz(x) = a2‘P2 (x), ‘Pz(x) #=0; ay#a,
since (\Pl,A\PZ) = (\Pl,aZ\Pz) = a2(\P1,\P2) (iii) also

(P AW ,) = (A}, W) = (V) W) =3 (¥}, ') (V)

alzaf because 3,,a, are real then from (iii) and (iv) we have

a, (¥, ¥y)=a, (¥, ¥,) = (@,-a)(¥, ¥,) =0 but 3 #a,

= (¥, ¥,)=0 I.e. the eigenvectors are orthogonal.

11.b J)sed) Ala)
Proof:
The properties of the projection operatorsP. are:
i-P is linear ii- P is hermitian iii- |5i2=I3i iv- “iﬁj :ﬁj P :5ijF“>i
i

V-2
|

The eigenvalues of the projection operators : Let I5igo;t = }tqo;t, Py 7 0

and since P is linear and FA’%% _ FAln(FA"/’z,) _ Fau(/l‘/’z,) :MFA)(D},) _ ,12%

and also B2 =R =(12-1)p, = A(A-Dp, =0, 0, #0 = A=0,1,
** The eigenvectors of the projection operators:

when 1 =0, the corresponding eigenvector is ¢, then Pg, =w.(v,,9,)=0¢p, =0,

and v, basis then (y,,0,)=0 =¢,=> aw; Where we canwrite ¢,by the basis

j#i




when 1 =1, the corresponding eigenvector is ¢, then Po, =v.(v,.¢)=1p =@,

and y, basis then (y,,¢)=k=0 = ¢, =ky, (i.e. linearly dependent).

1.0 J) s Ala)
To obtain the eigenfunctions and the eigenvalues for the given operator, we suppose

A . d d . d .
Ay =y, y =0 :>|—t//:M//.'.—t//((p):—llt//(qo):J.—Wzllj.dqo
de de v

- In(%) —ilp =y =Be’* from the condition y(p)=vy(p+2r)

we have Be 49 — ge WM (0+27) _ gomide -2k _, o=27h _1 . co(_274) +isin(—272) =1

= cos(2z1) —isin(2zA) =1 by comparison 271 =2nz, n=0,1,2,.... A=n and the eigenfns.
w(p)=Be "M’ n=012,...

2. s s
*The postulates of quantum mechanics are:
1)-Postulate I: Every physical state of a dynamical system (a particle) is represented at a
given instant of time t by normed vector |y) in H. It is assumed that the state vector

contains all the information which one can know about the state of the system at that
instant of time. y and e“y where 6" =5 represent the same physical state.

2)- Postulate Il: To every dynamical variable A there corresponds an observable A .

The observable x and p must satisfy [, p]=in. The rules for constructing the
observable A corresponding to the dynamical variable A, inthe x—rep are as follows:

(x> X=x,t>i=t, p> [?):—ihi
dx
(i) A(X, p,t) > A= A(x,—ih%,t).

3)- Postulate 111: If a particle is in state |y) , a measurement of a dynamical variable
A which is represented by the observable A

A|q0n> = an |q0n>1 <q0n |q)n> = 5nm’ ia = z|¢l><¢l | WI”
*yield one of the eigenvalues a, with probability

Kq’i |‘/’>‘2
(wlw)

Py (&)=

** |f the result of measurement is a, , then the state of the system will change from

lw) 10 |p,) as a result of measurement.




4)- Postulate IV: The state function w(x,t) describing the state of a dynamical system

whose Hamiltonian isH obeys the following” Schrodinger time-dependent” equation
0 -
h—w(x,t) = Hy(x,t
i att//(x ) =Hy(x1)

:2.b Jsad) Al

(@)= Asin’(p) describe the system i.e. normed

2 2
@) =1= [|A] sin*(p)dp =1=|Af jsin4(¢)d¢ =1
0

| |2 27

wsin’(p) = % (1-cos(2¢)), cos’(p) = (1 +€0s(2¢)) .. j (1—cos(2¢))(L+ cos(2¢))d e

| |227z | |227z

J' (1—2cos(2¢) +cos*(2¢))dep = —— j (1—2005(2(,0)+%(1+cos(4qo)))dq>

2 2z 2
|A| j (— Zcos(2¢)+ C0$(4(p))d(p—|A| [g¢—sin(2¢)+%sin(4¢)]§”
|A|2 37T|A|2 > 4 2
A2 @r)-0+2(0)-0+40-0]=—"1 =0 - |A' =—= A=
J [2(277) 0+8(0) 0+0-0] . 0..|A 3 N

2 .,
=—=15In , O<op<2r
v () Ton (p) ®

.-.<L; ) :<(//| 2y = j %sinz(qo).(—hzd—Z%Sinz((P))dﬁl’

j sin’ (¢).[2(cos () —sin® (¢)]de

—4h2 2 - —4h2 2 1
= j sin?(p).2cos(2¢)d¢ = j = (1-cos(2¢)).2cos(2¢)d ¢
T o9 3r
2 2w 2 2r

j (cos(2¢) —cos? (2p)dg = : j (cos(2(p)——(1+cos(4qo)))d¢

S sin(2g) -2 g~ Ssin(p)E" =~ [0~ 2x-0)]= 1.
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