Benha University

Department of Mathematics

Topology

The perfect Answer:

Faculty of Education

(1) Solution. (T1) Obviously $\phi \in \rho$ and since $p \in X$, so $X \in \rho$.

(T2) Let $G, H \in \rho$. Then $p \in G$ and $p \in H$, therefore, $p \in G \cap H$. Hence, $G \cap H \in \rho$. (T3) Let $H_i \in \rho$, where $i \in I$. Then $p \in H_i$, $\forall i \in I$, therefore, $p \in \bigcup_{i \in I} H_i$.

Hence,
$$\bigcup_{i \in I} H_i \in \rho$$
.

That is ρ is a topology on X.

(2) (i) Let (X, T) be a topological space and $A, B \subseteq X$. A point $\alpha \in A$ is called an interior point of A if there is an open set G such that $\alpha \in G \subseteq A$. The set of all interior points of a set A is called the interior of A and denoted by int A. From definition we have int $A \cap \text{ext } A = \phi$, int $A \cap b(A) = \phi$ and $\text{ext } A \cap b(A) = \phi$. Also, int $A \cup \text{ext } A \cup b(A) = \text{int } A \cup \text{ext } A \cup [(\text{int } A)^c \cap (\text{ext } A)^c]]$ $= [\text{int } A \cup \text{ext } A \cup (\text{int } A)^c] \cap [\text{int } A \cup \text{ext } A \cup (\text{ext } A)^c]$ $= [X \cup \text{ext } A] \cap [\text{ int } A \cup X]$ $= X \cap X$ = X.

ii) It follows from part (i) that $A' \subseteq (A \cup B)'$ and $B' \subseteq (A \cup B)'$. Then $A' \cup B' \subseteq (A \cup B)'$, (1) Conversely, we prove that $(A \cup B)' \subseteq A' \cup B'$. Take $\alpha \notin A' \cup B'$, we have $\alpha \notin A'$ and $\alpha \notin B'$ and hence there exist neighborhoods $V, W \in \mathcal{N}_{\alpha}$ such that $(V - \{\alpha\}) \cap A = \phi$ and $(W - \{\alpha\}) \cap B = \phi$. But $V \cap W \in \mathcal{N}_{\alpha}$ satisfies $[(V \cap W) - \{\alpha\}] \cap (A \cup B) = \phi$. Then $\alpha \notin (A \cup B)'$, which proves that $(A \cup B)' \subseteq A' \cup B'$, From (1), (2) we get $(A \cup B)' = A' \cup B'$.

(3) The closed sets of (X, τ) are $\phi, X, \{\beta, \theta\}$ and $h(\phi) = \phi$,

h(X) = Y and $h(\{\beta, \theta\}) = \{a, b\} = Y$ are closed of (Y, σ) , this shows that *h* is closed.

(2)

Also, the set $\{\alpha\}$ is an open of (X, τ) , but $h(\{\alpha\}) = \{b\}$ is not open of (Y, σ) , this shows that *h* is not open function.

Finally, since the set $\{a\} \in \sigma$, but $h^{-1}(\{a\}) = \{\theta\} \notin \tau$, then this shows that *h* is not continuous function.

(4) The function d: ℜ×ℜ → ℜ* defined by d(x, y) = |x - y|, where x, y∈ℜ, is a metric on ℜ, because for all x,y, z∈ℜ, we have
(1) d(x, y) = |x - y| > 0 and d(x, x) = |x - x| = 0
(2) d(x, y) = |x - y| = |y - x| = d(y, x)
(3) d(x, z) = |x - z| = |x - y + y - z| ≤ |x - y| + |y - z| = d(x, y) + d(y, z).

The open sphere S(0, 6) with center $p = 0 \in \Re$ and radius $\delta = 6$, is

$$S(0, 6) = \{x \in X : d(x, 0) < 6\}$$

= {x \in X : |x - 0| < 6}
= {x \in X : |x| < 6}
= {x \in X : -6 < x < 6}
=]-6, 6 [.