

Benha University Department of Mathematics

=== The perfect Answer:

(1) Solution. (T1) Obviously $\phi \in \rho$ and since $p \in X$, so $X \in \rho$.

(T2) Let $G, H \in \rho$. Then $p \in G$ and $p \in H$, therefore, $p \in G \cap H$. Hence, $G \cap H \in \mathfrak{O}$. (T3) Let $H_i \in \rho$, where i $\in I$. Then $p \in H_i$, \forall i $\in I$, therefore, $p \in \bigcup_{i \in I} H_i$.

Hence,
$$
\bigcup_{i \in I} H_i \in \rho
$$
.

That is ρ is a topology on X.

(2) (i) Let (X, τ) be a topological space and $A, B \subseteq X$. A point $\alpha \in A$ is called an interior point of *A* if there is an open set G such that $\alpha \in G \subset A$. The set of all interior points of a set *A* is called the interior of *A* and denoted by int *A*. From definition we have int *A* \cap ext *A* = ϕ , int *A* \cap b(*A*) = ϕ and ext *A* \cap b(*A*) = ϕ . Also, $\int \int_0^c f(x) \, dx \wedge dx = \int_0^c f(x) \, dx \wedge dx = \int_0^c f(x) \cdot dx$ $=[\text{int } A \cup \text{ext } A \cup (\text{int } A)^c] \cap [\text{int } A \cup \text{ext } A \cup (\text{ext } A)^c]$ $= [X \cup ext A] \cap [int A \cup X]$ $= X \cap X$ $= X_{-}$

ii) It follows from part (i) that $A' \subseteq (A \cup B)'$ and $B' \subseteq (A \cup B)'$. Then $A' \cup B' \subseteq (A \cup B)'$, (1) $\mathbf{p}' = (\mathbf{A} \cdot \mathbf{B})^T$ Conversely, we prove that $(A \cup B)' \subseteq A' \cup B'$. Take $\alpha \notin A' \cup B'$, we have $\alpha \notin A'$ and $\alpha \notin B'$ **/ / /** and hence there exist neighborhoods $V, W \in \mathcal{N}_{\alpha}$ such that $(V - {\alpha}) \cap A = \phi$ and $(W - {\alpha}) \cap B = \phi$. But $V \cap W \in \mathcal{N}_{\alpha}$ satisfies $[(V \cap W) - {\alpha}] \cap (A \cup B) = \phi$. Then

 $\alpha \notin (A \cup B)'$, which proves that $(A \cup B)' \subseteq A' \cup B'$ From (1) , (2) we get $(A \cup B)' = A' \cup B'$.

(3) The closed sets of (X, τ) are ϕ , X , $\{\beta, \theta\}$ and $h(\phi) = \phi$,

 $h(X) = Y$ and $h({\{\beta, \theta\}}) = {a, b} = Y$ are closed of (Y, σ) , this shows that *h* is closed.

 (2)

Also, the set $\{\alpha\}$ is an open of (X, τ) , but $h(\{\alpha\}) = \{b\}$ is not open of

 (Y, σ) , this shows that *h* is not open function.

Finally, since the set $\{a\} \in \sigma$, but $h^{-1}(\{a\}) = \{\theta\} \notin \tau$, then this shows that *h* is not continuous function.

(4) The function $d: \mathfrak{R} \times \mathfrak{R} \longrightarrow \mathfrak{R}^*$ defined by $d(x, y) = |x - y|$, where x, $y \in \mathcal{R}$, is a metric on \mathcal{R} , because for all x,y, $z \in \mathcal{R}$, we have (1) $d(x, y) = |x - y| > 0$ and $d(x, x) = |x - x| = 0$ (2) $d(x, y) = |x - y| = |y - x| = d(y, x)$ (3) *d*(x, z) = **|** x – z **|** = **|** x – y + y – z **| |** x – y **|** + **|** y – z **|** $= d(x, y) + d(y, z).$

The open sphere S(0, 6) with center $p = 0 \in \mathcal{R}$ and radius $\delta = 6$, is

$$
S(0, 6) = \{x \in X : d(x, 0) < 6\}
$$

= \{x \in X : |x - 0| < 6\}
= \{x \in X : |x| < 6\}
= \{x \in X : -6 < x < 6\}
=]-6, 6 [.